Numberland - New Processes, New Materials

  • Wer wir sind

    Wir sind - seit 1996 - als Ingenieurbüro auf dem Werkstoffsektor aktiv. Dabei verbinden wir Themen wie Innovations- Wissens- und Technologiemanagement mit sehr guten Kontakten zu Wissenschaft und Wirtschaft ...
    +Read More
  • Your man in Germany

                Your man in Germany Need a partner in Germany to get in contact with German institutions or companies? Are you tired of long distance phone calls or expensive trips from abroad with no or little results? Read more ...
    +Read More
  • Neue Werkstoffe

    Wir übersetzen technische Anforderungen in physikalische Effekte oder Eigenschaften, und finden dann den dazu passenden Werkstoff ... We translate technical demands intophysical effects or properties, andthen find the suitable material ...    
    +Read More
  • Neue Prozesse

    Wir analysieren, optimieren und dokumentieren Prozesse, die oft nicht im QM-Handbuch stehen,und bringen ihnen das Laufen bei ... We analyse, optimize and document processesoften not covered by quality management handbooks, and teach them to run ...
    +Read More
  • Leistungen

    Wir finden neue Werkstoffe, Bauteile, Herstellungs- und Analytikverfahren, Projektpartner, Entwickler oder Forschungseinrichtungen, Know-how oder Geräte, etc. Damit all diese neuen Erkenntnisse dann bei Ihnen auch effektiv eingesetzt werden können, helfen wir Ihnen, Ihr Wissen besser zu erfassen, Prozesse zu optimieren, F&E-Projekte durchzuführen, technische Angebote zu beurteilen oder Lastenhefte zu erstellen.  
    +Read More
  • 1
  • 2
  • 3
  • 4
  • 5

NumberlandTechnologyNews available in English und auf Deutsch

Publish Offers and Requests for free

This month offers and requests from the materials sector

We publish your materials conference

Better material properties at higher temperature

  • font size decrease font size increase font size
  • Print
  • Email
  • \n\n
Rate this item
(0 votes)

Better material properties at higher temperature

ID: F1601-01

Experts developed functionally graded Mo/Mo silicide composites based on refractory steel skeleton embedded in a refractory silicide matrix especially directed for high-temperature (HT) corrosive environments. Material properties change from area to core due to responses occurring as the material is created. The area, automotive and energy sectors demand ever-more functional and high-performance materials capable of withstanding harsh environments. In addition, they want them at reasonable cost. A European consortium of research institutes, universities and commercial partners from five nations features met that demand. Scientists developed novel in-situ formed HT composites comprising the concept of functionally graded materials (FGMs). Porous skeletons of refractory metal (molybdenum or niobium) have actually been embedded in a silicide matrix via stress assisted reactive infiltration. Grading is achieved because silicide forming reactions between Si melt and refractory steel happen predominantly at the area, creating an oxidation-resistant skin. The innovative reactive infiltration technique for preparing complex, near-net shaped parts with a self-forming oxide coating is a novel proprietary process. The novel FGM revealed significantly enhanced oxidation resistance at HT contrasted to a traditional molybdenum alloy and much greater fracture toughness at low temperatures compared to traditional silicides. The desired synergy provides the brand new HT composites enhanced properties whenever compared with currently most widely utilized nickel based superalloys. Technology was shown effectively on three different components, among which was a room framework for mounting thermal protection sheets. The composite survived thermal surprise resistance testing, simulating spacecraft re-entry conditions. Aside from the materials and manufacturing technologies, models describing effect kinetics in the molybdenum-silicide system represent a major contribution to manufacturers. They effectively simulate both fluid and solid state responses and the effects of barrier coatings on kinetics. FGMs are functionally superior to currently used superalloys and are created with an industrially legitimate manufacturing strategy. They promise crucial benefits for both atmosphere and ground transportation. Lighter and more durable elements capable of withstanding harsher conditions will facilitate reduced gas consumption and less emissions.

Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!