
3 TWO-DIMENSIONAL KINEMATICS

Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain’s Universal Port Aventura
Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is two- or three-dimensional motion, and can be described in
a similar fashion to one-dimensional motion. (credit: Boris23/Wikimedia Commons)

Learning Objectives
3.1. Kinematics in Two Dimensions: An Introduction
3.2. Vector Addition and Subtraction: Graphical Methods
3.3. Vector Addition and Subtraction: Analytical Methods
3.4. Projectile Motion
3.5. Addition of Velocities

Introduction to Two-Dimensional Kinematics
The arc of a basketball, the orbit of a satellite, a bicycle rounding a curve, a swimmer diving into a pool, blood gushing out of a wound, and a puppy
chasing its tail are but a few examples of motions along curved paths. In fact, most motions in nature follow curved paths rather than straight lines.
Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool table or a skater on an ice rink) is two-dimensional, and thus
described by two-dimensional kinematics. Motion not confined to a plane, such as a car following a winding mountain road, is described by three-
dimensional kinematics. Both two- and three-dimensional kinematics are simple extensions of the one-dimensional kinematics developed for straight-
line motion in the previous chapter. This simple extension will allow us to apply physics to many more situations, and it will also yield unexpected
insights about nature.
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3.1 Kinematics in Two Dimensions: An Introduction

Figure 3.2 Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow roads and sidewalks,
making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City
Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

Figure 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-dimensional path, such as the
one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line path form a right

triangle, and so the Pythagorean theorem, a2  + b2  = c2 , can be used to find the straight-line distance.

Figure 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled a and b , with the hypotenuse, labeled c . The relationship is given by:

a2 + b2 = c2 . This can be rewritten, solving for c : c = a2 + b2 .

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is

(9 blocks)2+ (5 blocks)2= 10.3 blocks , considerably shorter than the 14 blocks you walked. (Note that we are using three significant figures in

the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In this case “9 blocks” is the same as “9.0
or 9.00 blocks.” We have decided to use three significant figures in the answer in order to show the result more precisely.)
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Figure 3.5 The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are square and the same
size.

The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks) is one example of a general
characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector’s magnitude. The arrow’s
length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points in the same direction as the vector. For two-dimensional motion, the
path of an object can be represented with three vectors: one vector shows the straight-line path between the initial and final points of the motion, one
vector shows the horizontal component of the motion, and one vector shows the vertical component of the motion. The horizontal and vertical
components of the motion add together to give the straight-line path. For example, observe the three vectors in Figure 3.5. The first represents a
9-block displacement east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block
total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we are adding are
perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem to calculate the magnitude of the
total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are not perpendicular. We will develop techniques for
adding vectors having any direction, not just those perpendicular to one another, in Vector Addition and Subtraction: Graphical Methods and
Vector Addition and Subtraction: Analytical Methods.)

The Independence of Perpendicular Motions
The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far he or she walks east is only
affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her motion northward.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the horizontal direction does not
affect motion in the vertical direction, and vice versa.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated motion involving
movement in two directions at once. For example, let’s compare the motions of two baseballs. One baseball is dropped from rest. At the same
instant, another is thrown horizontally from the same height and follows a curved path. A stroboscope has captured the positions of the balls at fixed
time intervals as they fall.

Figure 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent position is an equal time interval.
Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the ball on the left has no horizontal velocity.
Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls. This shows that the vertical and horizontal motions are
independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies that the vertical motion is
independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical motion of a falling object is influenced by
gravity only, and not by any horizontal forces.) Careful examination of the ball thrown horizontally shows that it travels the same horizontal distance
between flashes. This is due to the fact that there are no additional forces on the ball in the horizontal direction after it is thrown. This result means
that the horizontal velocity is constant, and affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal
conditions. In the real world, air resistance will affect the speed of the balls in both directions.
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The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions (horizontal and vertical).
The key to analyzing such motion, called projectile motion, is to resolve (break) it into motions along perpendicular directions. Resolving two-
dimensional motion into perpendicular components is possible because the components are independent. We shall see how to resolve vectors in
Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods. We will find such techniques
to be useful in many areas of physics.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the
vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Figure 3.7 Ladybug Motion 2D (http://cnx.org/content/m42104/1.4/ladybug-motion-2d_en.jar)

3.2 Vector Addition and Subtraction: Graphical Methods

Figure 3.8 Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai’i to Moloka’i has a number of legs,
or journey segments. These segments can be added graphically with a ruler to determine the total two-dimensional displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions
A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all vectors. In one-
dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two dimensions (2-d), however, we
specify the direction of a vector relative to some reference frame (i.e., coordinate system), using an arrow having length proportional to the vector’s
magnitude and pointing in the direction of the vector.

Figure 3.9 shows such a graphical representation of a vector, using as an example the total displacement for the person walking in a city considered
in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol, such as D , stands for a vector. Its

magnitude is represented by the symbol in italics, D , and its direction by θ .

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the vector F , which has

both magnitude and direction. The magnitude of the vector will be represented by a variable in italics, such as F , and the direction of the

variable will be given by an angle θ .
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Figure 3.9 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1º north of east.

Figure 3.10 To describe the resultant vector for the person walking in a city considered in Figure 3.9 graphically, draw an arrow to represent the total displacement vector D .

Using a protractor, draw a line at an angle θ relative to the east-west axis. The length D of the arrow is proportional to the vector’s magnitude and is measured along the

line with a ruler. In this example, the magnitude D of the vector is 10.3 units, and the direction θ is 29.1º north of east.

Vector Addition: Head-to-Tail Method
The head-to-tail method is a graphical way to add vectors, described in Figure 3.11 below and in the steps following. The tail of the vector is the
starting point of the vector, and the head (or tip) of a vector is the final, pointed end of the arrow.

Figure 3.11 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking in a city considered in
Figure 3.9. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the north. The tail of this vector should originate
from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the head of the north-pointing vector to form the sum or resultant
vector D . The length of the arrow D is proportional to the vector’s magnitude and is measured to be 10.3 units . Its direction, described as the angle with respect to the east

(or horizontal axis) θ is measured with a protractor to be 29.1º .

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.
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Figure 3.12

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head of the first vector.

Figure 3.13

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have only two vectors, so
we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum, of the other vectors.

Figure 3.14

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the Pythagorean theorem to
determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that in most calculations,
we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the precision of the measuring
tools. It is valid for any number of vectors.
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Example 3.1 Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a Walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths (displacements) on
a flat field. First, she walks 25.0 m in a direction 49.0º north of east. Then, she walks 23.0 m heading 15.0º north of east. Finally, she turns
and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A , the second B , and the third C , making the lengths
proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail method outlined above will give a way to
determine the magnitude and direction of the resultant displacement, denoted R .

Solution

(1) Draw the three displacement vectors.

Figure 3.15

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

Figure 3.16

(3) Draw the resultant vector, R .

Figure 3.17

(4) Use a ruler to measure the magnitude of R , and a protractor to measure the direction of R . While the direction of the vector can be
specified in many ways, the easiest way is to measure the angle between the vector and the nearest horizontal or vertical axis. Since the
resultant vector is south of the eastward pointing axis, we flip the protractor upside down and measure the angle between the eastward axis and
the vector.
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Figure 3.18

In this case, the total displacement R is seen to have a magnitude of 50.0 m and to lie in a direction 7.0º south of east. By using its magnitude

and direction, this vector can be expressed as R = 50.0 m and θ = 7.0º south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the resultant is independent
of the order in which the vectors are added. Therefore, we could add the vectors in any order as illustrated in Figure 3.19 and we will still get the
same solution.

Figure 3.19

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in every case and is an
important characteristic of vectors. Vector addition is commutative. Vectors can be added in any order.

(3.1)A + B = B + A.

(This is true for the addition of ordinary numbers as well—you get the same result whether you add 2 + 3 or 3 + 2 , for example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract B from A , written A – B , we

must first define what we mean by subtraction. The negative of a vector B is defined to be –B ; that is, graphically the negative of any vector has
the same magnitude but the opposite direction, as shown in Figure 3.20. In other words, B has the same length as –B , but points in the opposite
direction. Essentially, we just flip the vector so it points in the opposite direction.
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Figure 3.20 The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So B is the negative of –B ; it has the same length
but opposite direction.

The subtraction of vector B from vector A is then simply defined to be the addition of –B to A . Note that vector subtraction is the addition of a
negative vector. The order of subtraction does not affect the results.

(3.2)A – B = A + (–B).

This is analogous to the subtraction of scalars (where, for example, 5 – 2 = 5 + (–2) ). Again, the result is independent of the order in which the

subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the following example illustrates.

Example 3.2 Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction 66.0º north of east from

her current location, and then travel 30.0 m in a direction 112º north of east (or 22.0º west of north). If the woman makes a mistake and
travels in the opposite direction for the second leg of the trip, where will she end up? Compare this location with the location of the dock.

Figure 3.21

Strategy

We can represent the first leg of the trip with a vector A , and the second leg of the trip with a vector B . The dock is located at a location

A + B . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she will travel a distance B (30.0 m) in the

direction 180º – 112º = 68º south of east. We represent this as –B , as shown below. The vector –B has the same magnitude as B but is

in the opposite direction. Thus, she will end up at a location A + (–B) , or A – B .

Figure 3.22

We will perform vector addition to compare the location of the dock, A + B , with the location at which the woman mistakenly arrives,

A + (–B) .
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Solution

(1) To determine the location at which the woman arrives by accident, draw vectors A and –B .

(2) Place the vectors head to tail.

(3) Draw the resultant vector R .

(4) Use a ruler and protractor to measure the magnitude and direction of R .

Figure 3.23

In this case, R = 23.0 m and θ = 7.5º south of east.

(5) To determine the location of the dock, we repeat this method to add vectors A and B . We obtain the resultant vector R ' :

Figure 3.24

In this case R = 52.9 m and θ = 90.1º north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of subtracting vectors works
the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk 3 × 27.5 m , or 82.5 m,

in a direction 66.0º north of east. This is an example of multiplying a vector by a positive scalar. Notice that the magnitude changes, but the
direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the opposite direction. For example,
if you multiply by –2, the magnitude doubles but the direction changes. We can summarize these rules in the following way: When vector A is
multiplied by a scalar c ,

• the magnitude of the vector becomes the absolute value of c A ,

• if c is positive, the direction of the vector does not change,

• if c is negative, the direction is reversed.

In our case, c = 3 and A = 27.5 m . Vectors are multiplied by scalars in many situations. Note that division is the inverse of multiplication. For
example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by scalars are the same for division; simply
treat the divisor as a scalar between 0 and 1.
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Resolving a Vector into Components
In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to do the opposite. We
will need to take a single vector and find what other vectors added together produce it. In most cases, this involves determining the perpendicular
components of a single vector, for example the x- and y-components, or the north-south and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0º north of east and want to find
out how many blocks east and north had to be walked. This method is called finding the components (or parts) of the displacement in the east and
north directions, and it is the inverse of the process followed to find the total displacement. It is one example of finding the components of a vector.
There are many applications in physics where this is a useful thing to do. We will see this soon in Projectile Motion, and much more when we cover
forces in Dynamics: Newton’s Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so
that right triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal for finding
vector components.

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to
make the game more difficult. Try to make a goal as fast as you can.

Figure 3.25 Maze Game (http://cnx.org/content/m42127/1.7/maze-game_en.jar)

3.3 Vector Addition and Subtraction: Analytical Methods
Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and protractor of graphical
methods. Part of the graphical technique is retained, because vectors are still represented by arrows for easy visualization. However, analytical
methods are more concise, accurate, and precise than graphical methods, which are limited by the accuracy with which a drawing can be made.
Analytical methods are limited only by the accuracy and precision with which physical quantities are known.

Resolving a Vector into Perpendicular Components
Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular directions are
independent. We very often need to separate a vector into perpendicular components. For example, given a vector like A in Figure 3.26, we may

wish to find which two perpendicular vectors, Ax and Ay , add to produce it.

Figure 3.26 The vector A , with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, Ax and Ay . These vectors form a right

triangle. The analytical relationships among these vectors are summarized below.

Ax and Ay are defined to be the components of A along the x- and y-axes. The three vectors A , Ax , and Ay form a right triangle:

(3.3)Ax  + Ay = A.

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include both magnitude and
direction). The relationship does not apply for the magnitudes alone. For example, if Ax = 3 m east, Ay = 4 m north, and A = 5 m north-east,

then it is true that the vectors Ax  + Ay = A . However, it is not true that the sum of the magnitudes of the vectors is also equal. That is,

(3.4)3 m + 4 m ≠  5 m

Thus,
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(3.5)Ax + Ay ≠ A

If the vector A is known, then its magnitude A (its length) and its angle θ (its direction) are known. To find Ax and Ay , its x- and y-components,

we use the following relationships for a right triangle.

(3.6)Ax = A cos θ

and

(3.7)Ay = A sin θ.

Figure 3.27 The magnitudes of the vector components Ax and Ay can be related to the resultant vector A and the angle θ with trigonometric identities. Here we see

that Ax = A cos θ and Ay = A sin θ .

Suppose, for example, that A is the vector representing the total displacement of the person walking in a city considered in Kinematics in Two
Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods.

Figure 3.28 We can use the relationships Ax = A cos θ and Ay = A sin θ to determine the magnitude of the horizontal and vertical component vectors in this

example.

Then A = 10.3 blocks and θ = 29.1º , so that

(3.8)Ax = A cos θ = ⎛
⎝10.3 blocks⎞⎠⎛⎝cos 29.1º⎞⎠ = 9.0 blocks

(3.9)Ay = A sin θ = ⎛⎝10.3 blocks⎞⎠⎛⎝sin 29.1º⎞⎠ = 5.0 blocks.

Calculating a Resultant Vector

If the perpendicular components Ax and Ay of a vector A are known, then A can also be found analytically. To find the magnitude A and

direction θ of a vector from its perpendicular components Ax and Ay , we use the following relationships:

(3.10)A = Ax2 + Ay2

(3.11)θ = tan−1(Ay / Ax).
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Figure 3.29 The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components Ax and Ay have been determined.

Note that the equation A = Ax
2 + Ay

2 is just the Pythagorean theorem relating the legs of a right triangle to the length of the hypotenuse. For

example, if Ax and Ay are 9 and 5 blocks, respectively, then A = 92 +52=10.3 blocks, again consistent with the example of the person

walking in a city. Finally, the direction is θ = tan–1(5/9)=29.1º , as before.

Determining Vectors and Vector Components with Analytical Methods

Equations Ax = A cos θ and Ay = A sin θ are used to find the perpendicular components of a vector—that is, to go from A and θ to Ax

and Ay . Equations A = Ax
2 + Ay

2 and θ = tan–1(Ay / Ax) are used to find a vector from its perpendicular components—that is, to go from

Ax and Ay to A and θ . Both processes are crucial to analytical methods of vector addition and subtraction.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.30, in which the vectors A and B are added to produce the

resultant R .

Figure 3.30 Vectors A and B are two legs of a walk, and R is the resultant or total displacement. You can use analytical methods to determine the magnitude and

direction of R .

If A and B represent two legs of a walk (two displacements), then R is the total displacement. The person taking the walk ends up at the tip of

R. There are many ways to arrive at the same point. In particular, the person could have walked first in the x-direction and then in the y-direction.

Those paths are the x- and y-components of the resultant, Rx and Ry . If we know Rx and Ry , we can find R and θ using the equations

A = Ax
2 + Ay

2 and θ = tan–1(Ay / Ax) . When you use the analytical method of vector addition, you can determine the components or the

magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along the chosen
perpendicular axes. Use the equations Ax = A cos θ and Ay = A sin θ to find the components. In Figure 3.31, these components are Ax , Ay ,

Bx , and By . The angles that vectors A and B make with the x-axis are θA and θB , respectively.
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Figure 3.31 To add vectors A and B , first determine the horizontal and vertical components of each vector. These are the dotted vectors Ax , Ay , Bx and By shown

in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis. That is, as shown in
Figure 3.32,

(3.12)Rx = Ax + Bx

and

(3.13)Ry = Ay + By.

Figure 3.32 The magnitude of the vectors Ax and Bx add to give the magnitude Rx of the resultant vector in the horizontal direction. Similarly, the magnitudes of the

vectors Ay and By add to give the magnitude Ry of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like ordinary numbers. The
same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in two legs, the first 3 blocks east and the
second 6 blocks east, for a total of 9, because they are along the same direction.) So resolving vectors into components along common axes makes
it easier to add them. Now that the components of R are known, its magnitude and direction can be found.

Step 3. To get the magnitude R of the resultant, use the Pythagorean theorem:

(3.14)R = Rx
2 + Ry

2.

Step 4. To get the direction of the resultant:

(3.15)θ = tan−1(Ry / Rx).

The following example illustrates this technique for adding vectors using perpendicular components.

Example 3.3 Adding Vectors Using Analytical Methods

Add the vector A to the vector B shown in Figure 3.33, using perpendicular components along the x- and y-axes. The x- and y-axes are along

the east–west and north–south directions, respectively. Vector A represents the first leg of a walk in which a person walks 53.0 m in a

direction 20.0º north of east. Vector B represents the second leg, a displacement of 34.0 m in a direction 63.0º north of east.
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Figure 3.33 Vector A has magnitude 53.0 m and direction 20.0 º north of the x-axis. Vector B has magnitude 34.0 m and direction 63.0º north of the x-

axis. You can use analytical methods to determine the magnitude and direction of R .

Strategy

The components of A and B along the x- and y-axes represent walking due east and due north to get to the same ending point. Once found,
they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of A and B along the x- and y-axes. Note that A = 53.0 m , θA = 20.0º ,

B = 34.0 m , and θB = 63.0º . We find the x-components by using Ax = A cos θ , which gives

(3.16)Ax = A cos θA = (53.0 m)(cos 20.0º)
= (53.0 m)(0.940) = 49.8 m

and

(3.17)Bx = B cos θB = (34.0 m)(cos 63.0º)
= (34.0 m)(0.454) = 15.4 m.

Similarly, the y-components are found using Ay = A sin θA :

(3.18)Ay = A sin θA = (53.0 m)(sin 20.0º)
= (53.0 m)(0.342) = 18.1 m

and

(3.19)By = B sin θB = (34.0 m)(sin 63.0 º )
= (34.0 m)(0.891) = 30.3 m.

The x- and y-components of the resultant are thus

(3.20)Rx = Ax + Bx = 49.8 m + 15.4 m = 65.2 m

and

(3.21)Ry = Ay + By = 18.1 m+30.3 m = 48.4 m.

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

(3.22)R = Rx
2 + Ry

2 = (65.2)2 + (48.4)2 m

so that

(3.23)R = 81.2 m.
Finally, we find the direction of the resultant:

(3.24)θ = tan−1(Ry / Rx)=+tan−1(48.4 / 65.2).

Thus,

(3.25)θ = tan−1(0.742) = 36.6 º .
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Figure 3.34 Using analytical methods, we see that the magnitude of R is 81.2 m and its direction is 36.6º north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular components is very
similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, A − B ≡ A + (–B) . Thus, the method for the subtraction

of vectors using perpendicular components is identical to that for addition. The components of –B are the negatives of the components of B .

The x- and y-components of the resultant A − B = R are thus

(3.26)Rx = Ax + ⎛
⎝ – Bx

⎞
⎠

and

(3.27)Ry = Ay + ⎛⎝ – By
⎞
⎠

and the rest of the method outlined above is identical to that for addition. (See Figure 3.35.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are often independent
of one another. The next module, Projectile Motion, is one of many in which using perpendicular components helps make the picture clear and
simplifies the physics.

Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of –B are the negatives of the components of B . The method of subtraction is the
same as that for addition.

PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude, angle, and
components of each vector can be displayed in several formats.

Figure 3.36 Vector Addition (http://cnx.org/content/m42128/1.10/vector-addition_en.jar)
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3.4 Projectile Motion
Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a
projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving Basics for One-Dimensional
Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal movement. In this section, we consider two-
dimensional projectile motion, such as that of a football or other object for which air resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed separately. This fact
was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions were seen to be independent. The key to
analyzing two-dimensional projectile motion is to break it into two motions, one along the horizontal axis and the other along the vertical. (This choice
of axes is the most sensible, because acceleration due to gravity is vertical—thus, there will be no acceleration along the horizontal axis when air
resistance is negligible.) As is customary, we call the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.37 illustrates the notation for
displacement, where s is defined to be the total displacement and x and y are its components along the horizontal and vertical axes, respectively.

The magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation A to represent a vector with components Ax
and Ay . If we continued this format, we would call displacement s with components sx and sy . However, to simplify the notation, we will simply

represent the component vectors as x and y .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x-
and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of

acceleration are then very simple: ay = – g = – 9.80 m/s2 . (Note that this definition assumes that the upwards direction is defined as the

positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a
positive value.) Because gravity is vertical, ax = 0 . Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant a )

(3.28)x = x0 + v- t
(3.29)v- = v0 + v

2
(3.30)v = v0 + at
(3.31)x = x0 + v0t + 1

2at2

(3.32)v2 = v0
2 + 2a(x − x0).

Figure 3.37 The total displacement s of a soccer ball at a point along its path. The vector s has components x and y along the horizontal and vertical axes. Its magnitude

is s , and it makes an angle θ with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are perpendicular, so
Ax = A cos θ and Ay = A sin θ are used. The magnitude of the components of displacement s along these axes are x and y. The

magnitudes of the components of the velocity v are vx = v cos θ and vy = v sin θ, where v is the magnitude of the velocity and θ is its

direction, as shown in Figure 3.38. Initial values are denoted with a subscript 0, as usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic equations for horizontal
and vertical motion take the following forms:

(3.33)Horizontal Motion(ax = 0)
(3.34)x = x0 + vxt
(3.35)vx = v0x = vx = velocity is a constant.
(3.36)Vertical Motion(assuming positive is up ay = −g = −9.80m/s2)
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(3.37)y = y0 + 1
2(v0y + vy)t

(3.38)vy = v0y − gt
(3.39)y = y0 + v0yt − 1

2gt2

(3.40)vy
2 = v0y

2 − 2g(y − y0).

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common variable between the
motions is time t . The problem solving procedures here are the same as for one-dimensional kinematics and are illustrated in the solved examples
below.

Step 4. Recombine the two motions to find the total displacement s and velocity v . Because the x - and y -motions are perpendicular, we determine

these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical Methods and employing A = Ax
2 + Ay

2 and

θ = tan−1(Ay / Ax) in the following form, where θ is the direction of the displacement s and θv is the direction of the velocity v :

Total displacement and velocity

(3.41)s = x2 + y2

(3.42)θ = tan−1(y / x)
(3.43)v = vx

2 + vy
2

(3.44)θv = tan−1(vy / vx).
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Figure 3.38 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and horizontal axes. (b) The
horizontal motion is simple, because ax = 0 and vx is thus constant. (c) The velocity in the vertical direction begins to decrease as the object rises; at its highest point, the

vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical
velocity. (d) The x - and y -motions are recombined to give the total velocity at any given point on the trajectory.

Example 3.4 A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0º above the horizontal, as illustrated in
Figure 3.39. The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a) Calculate the height at which the shell
explodes. (b) How much time passed between the launch of the shell and the explosion? (c) What is the horizontal displacement of the shell
when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion can be broken into
horizontal and vertical motions in which ax = 0 and ay = – g . We can then define x0 and y0 to be zero and solve for the desired

quantities.

Solution for (a)

By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called the apex, is reached

when vy = 0 . Since we know the initial and final velocities as well as the initial position, we use the following equation to find y :

(3.45)vy
2 = v0y

2 − 2g(y − y0).
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Figure 3.39 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be at a height of 233 m and 125 m
away horizontally.

Because y0 and vy are both zero, the equation simplifies to

(3.46)0 = v0y
2 − 2gy.

Solving for y gives

(3.47)
y =

v0y
2

2g .

Now we must find v0y , the component of the initial velocity in the y-direction. It is given by v0y = v0 sin θ , where v0y is the initial velocity of

70.0 m/s, and θ0 = 75.0º is the initial angle. Thus,

(3.48)v0y = v0 sin θ0 = (70.0 m/s)(sin 75º) = 67.6 m/s.

and y is

(3.49)
y = (67.6 m/s)2

2(9.80 m/s2)
,

so that

(3.50)y = 233m.

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity is negative. Note
also that the maximum height depends only on the vertical component of the initial velocity, so that any projectile with a 67.6 m/s initial vertical
component of velocity will reach a maximum height of 233 m (neglecting air resistance). The numbers in this example are reasonable for large
fireworks displays, the shells of which do reach such heights before exploding. In practice, air resistance is not completely negligible, and so the
initial velocity would have to be somewhat larger than that given to reach the same height.

Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest method is to use

y = y0 + 1
2(v0y + vy)t . Because y0 is zero, this equation reduces to simply

(3.51)y = 1
2(v0y + vy)t.

Note that the final vertical velocity, vy , at the highest point is zero. Thus,

(3.52)
t = 2y

(v0y + vy)
= 2(233 m)

(67.6 m/s)
= 6.90 s.

Discussion for (b)
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This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several seconds pass before

the shell explodes. (Another way of finding the time is by using y = y0 + v0yt − 1
2gt2 , and solving the quadratic equation for t .)

Solution for (c)

Because air resistance is negligible, ax = 0 and the horizontal velocity is constant, as discussed above. The horizontal displacement is

horizontal velocity multiplied by time as given by x = x0 + vxt , where x0 is equal to zero:

(3.53)x = vxt,

where vx is the x-component of the velocity, which is given by vx = v0 cos θ0 . Now,

(3.54)vx = v0 cos θ0 = (70.0 m/s)(cos 75.0º) = 18.1 m/s.

The time t for both motions is the same, and so x is

(3.55)x = (18.1 m/s)(6.90 s) = 125 m.

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be useful in keeping
the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major effect, and many fragments will land
directly below.

In solving part (a) of the preceding example, the expression we found for y is valid for any projectile motion where air resistance is negligible. Call

the maximum height y = h ; then,

(3.56)
h =

v0y
2

2g .

This equation defines the maximum height of a projectile and depends only on the vertical component of the initial velocity.

Defining a Coordinate System

It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system is to define an origin
for the x and y positions. Often, it is convenient to choose the initial position of the object as the origin such that x0 = 0 and y0 = 0 . It is

also important to define the positive and negative directions in the x and y directions. Typically, we define the positive vertical direction as

upwards, and the positive horizontal direction is usually the direction of the object’s motion. When this is the case, the vertical acceleration, g ,

takes a negative value (since it is directed downwards towards the Earth). However, it is occasionally useful to define the coordinates differently.
For example, if you are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive direction
downwards since the motion of the ball is solely in the downwards direction. If this is the case, g takes a positive value.

Example 3.5 Calculating Projectile Motion: Hot Rock Projectile

Kilauea in Hawaii is the world’s most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks and lava rather
than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an angle 35.0º above the horizontal, as
shown in Figure 3.40. The rock strikes the side of the volcano at an altitude 20.0 m lower than its starting point. (a) Calculate the time it takes the
rock to follow this path. (b) What are the magnitude and direction of the rock’s velocity at impact?

Figure 3.40 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the desired quantities. The
time a projectile is in the air is governed by its vertical motion alone. We will solve for t first. While the rock is rising and falling vertically, the
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horizontal motion continues at a constant velocity. This example asks for the final velocity. Thus, the vertical and horizontal results will be
recombined to obtain v and θv at the final time t determined in the first part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time for this by using

(3.57)y = y0 + v0yt − 1
2gt2.

If we take the initial position y0 to be zero, then the final position is y = −20.0 m. Now the initial vertical velocity is the vertical component of

the initial velocity, found from v0y = v0 sin θ0 = ( 25.0 m/s )( sin 35.0º ) = 14.3 m/s . Substituting known values yields

(3.58)−20.0 m = (14.3 m/s)t − ⎛⎝4.90 m/s2⎞⎠t2.

Rearranging terms gives a quadratic equation in t :

(3.59)⎛
⎝4.90 m/s2⎞⎠t2 − (14.3 m/s)t − (20.0 m) = 0.

This expression is a quadratic equation of the form at2 + bt + c = 0 , where the constants are a = 4.90 , b = – 14.3 , and c = – 20.0. Its
solutions are given by the quadratic formula:

(3.60)
t = −b ± b2 − 4ac

2a .

This equation yields two solutions: t = 3.96 and t = – 1.03 . (It is left as an exercise for the reader to verify these solutions.) The time is

t = 3.96 s or – 1.03 s . The negative value of time implies an event before the start of motion, and so we discard it. Thus,

(3.61)t = 3.96 s.
Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical velocity of 14.3 m/s and
lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities vx and vy and combine them to find the total velocity

v and the angle θ0 it makes with the horizontal. Of course, vx is constant so we can solve for it at any horizontal location. In this case, we

chose the starting point since we know both the initial velocity and initial angle. Therefore:

(3.62)vx = v0 cos θ0 = (25.0 m/s)(cos 35º) = 20.5 m/s.

The final vertical velocity is given by the following equation:

(3.63)vy = v0y − gt,

where v0y was found in part (a) to be 14.3 m/s . Thus,

(3.64)vy = 14.3 m/s − (9.80 m/s2)(3.96 s)

so that

(3.65)vy = −24.5 m/s.

To find the magnitude of the final velocity v we combine its perpendicular components, using the following equation:

(3.66)v = vx
2 + vy

2 = (20.5 m/s)2 + ( − 24.5 m/s)2,

which gives

(3.67)v = 31.9 m/s.

The direction θv is found from the equation:

(3.68)θv = tan−1(vy / vx)

so that

(3.69)θv = tan−1( − 24.5 / 20.5) = tan−1( − 1.19).

Thus,

(3.70)θv = −50.1 º .
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Discussion for (b)

The negative angle means that the velocity is 50.1º below the horizontal. This result is consistent with the fact that the final vertical velocity is
negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the initial altitude. (See Figure 3.40.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each other. Galileo was the
first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level ground, we define range to be the
horizontal distance R traveled by a projectile. Galileo and many others were interested in the range of projectiles primarily for military
purposes—such as aiming cannons. However, investigating the range of projectiles can shed light on other interesting phenomena, such as the orbits
of satellites around the Earth. Let us consider projectile range further.

Figure 3.41 Trajectories of projectiles on level ground. (a) The greater the initial speed v0 , the greater the range for a given initial angle. (b) The effect of initial angle θ0 on

the range of a projectile with a given initial speed. Note that the range is the same for 15º and 75º , although the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed v0 , the greater the range, as shown in Figure

3.41(a). The initial angle θ0 also has a dramatic effect on the range, as illustrated in Figure 3.41(b). For a fixed initial speed, such as might be

produced by a cannon, the maximum range is obtained with θ0 = 45º . This is true only for conditions neglecting air resistance. If air resistance is

considered, the maximum angle is approximately 38º . Interestingly, for every initial angle except 45º , there are two angles that give the same

range—the sum of those angles is 90º . The range also depends on the value of the acceleration of gravity g . The lunar astronaut Alan Shepherd

was able to drive a golf ball a great distance on the Moon because gravity is weaker there. The range R of a projectile on level ground for which air
resistance is negligible is given by

(3.71)
R =

v0
2 sin 2θ0

g ,

where v0 is the initial speed and θ0 is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-chapter problem

(hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that R is very small compared with the circumference of the Earth. If,
however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes direction along the path. The range is
larger than predicted by the range equation given above because the projectile has farther to fall than it would on level ground. (See Figure 3.42.) If
the initial speed is great enough, the projectile goes into orbit. This is called escape velocity. This possibility was recognized centuries before it could
be accomplished. When an object is in orbit, the Earth curves away from underneath the object at the same rate as it falls. The object thus falls
continuously but never hits the surface. These and other aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in
greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth orbits. In Addition of
Velocities, we will examine the addition of velocities, which is another important aspect of two-dimensional kinematics and will also yield insights
beyond the immediate topic.
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Figure 3.42 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing initial speed, the range
increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a large enough initial speed, orbit is achieved.

PhET Explorations: Projectile Motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance.
Make a game out of this simulation by trying to hit a target.

Figure 3.43 Projectile Motion (http://cnx.org/content/m42042/1.10/projectile-motion_en.jar)

3.5 Addition of Velocities

Relative Velocity
If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves diagonally relative to the
shore, as in Figure 3.44. The boat does not move in the direction in which it is pointed. The reason, of course, is that the river carries the boat
downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in
which it is pointed, as illustrated in Figure 3.45. The plane is moving straight ahead relative to the air, but the movement of the air mass relative to the
ground carries it sideways.

Figure 3.44 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow) relative to the shore is the
sum of its velocity relative to the river plus the velocity of the river relative to the shore.
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Figure 3.45 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground in the direction it
points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity relative to an observer on
solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as indicated in Figure 3.44 and Figure 3.45.
These situations are only two of many in which it is useful to add velocities. In this module, we first re-examine how to add velocities and then
consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition discussed in Vector Addition and
Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to the addition of velocities, just as they do for
any other vectors. In one-dimensional motion, the addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey
player is moving at 5 m/s straight toward the goal and drives the ball in the same direction with a velocity of 30 m/s relative to her body, then the

velocity of the ball is 35 m/s relative to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on analytical techniques. The
following equations give the relationships between the magnitude and direction of velocity ( v and θ ) and its components ( vx and vy ) along the x-

and y-axes of an appropriately chosen coordinate system:

(3.72)vx = v cos θ
(3.73)vy = v sin θ
(3.74)v = vx

2 + vy
2

(3.75)θ = tan−1(vy / vx).

Figure 3.46 The velocity, v , of an object traveling at an angle θ to the horizontal axis is the sum of component vectors vx and vy .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the components of a
velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction of velocity when its components are
known.

Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to drain. Try pushing the
boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you need to push the boat so that it ends up
immediately opposite? Compare the directions of the flow of water, heading of the boat, and actual velocity of the boat.
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Example 3.6 Adding Velocities: A Boat on a River

Figure 3.47 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of 1.20 m/s to the right. What is the
total displacement of the boat relative to the shore?

Refer to Figure 3.47, which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction of the boat’s velocity
relative to an observer on the shore, vtot . The velocity of the boat, vboat , is 0.75 m/s in the y -direction relative to the river and the velocity of

the river, vriver , is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its x -axis parallel to the velocity of the river, as shown in Figure 3.47. Because the boat is
directed straight toward the other shore, its velocity relative to the water is parallel to the y -axis and perpendicular to the velocity of the river.

Thus, we can add the two velocities by using the equations vtot = vx
2 + vy

2 and θ = tan−1(vy / vx) directly.

Solution

The magnitude of the total velocity is

(3.76)vtot = vx
2 + vy

2,

where

(3.77)vx = vriver = 1.20 m/s

and

(3.78)vy = vboat = 0.750 m/s.

Thus,

(3.79)vtot = (1.20 m/s)2 + (0.750 m/s)2

yielding

(3.80)vtot = 1.42 m/s.

The direction of the total velocity θ is given by:

(3.81)θ = tan−1(vy / vx) = tan−1(0.750 / 1.20).

This equation gives

(3.82)θ = 32.0º.
Discussion

Both the magnitude v and the direction θ of the total velocity are consistent with Figure 3.47. Note that because the velocity of the river is

large compared with the velocity of the boat, it is swept rapidly downstream. This result is evidenced by the small angle (only 32.0º ) the total
velocity has relative to the riverbank.
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Example 3.7 Calculating Velocity: Wind Velocity Causes an Airplane to Drift

Calculate the wind velocity for the situation shown in Figure 3.48. The plane is known to be moving at 45.0 m/s due north relative to the air
mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction 20.0º west of north.

Figure 3.48 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of north. What is the speed and
direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity vtot and that it is the sum of two other velocities, vw
(the wind) and vp (the plane relative to the air mass). The quantity vp is known, and we are asked to find vw . None of the velocities are

perpendicular, but it is possible to find their components along a common set of perpendicular axes. If we can find the components of vw , then

we can combine them to solve for its magnitude and direction. As shown in Figure 3.48, we choose a coordinate system with its x-axis due east
and its y-axis due north (parallel to vp ). (You may wish to look back at the discussion of the addition of vectors using perpendicular components

in Vector Addition and Subtraction: Analytical Methods.)

Solution

Because vtot is the vector sum of the vw and vp , its x- and y-components are the sums of the x- and y-components of the wind and plane

velocities. Note that the plane only has vertical component of velocity so vpx = 0 and vpy = vp . That is,

(3.83)vtotx = vwx

and

(3.84)vtoty = vwx + vp.

We can use the first of these two equations to find vwx :

(3.85)vwx = vtotx = vtotcos 110º.

Because vtot = 38.0 m / s and cos 110º = – 0.342 we have

(3.86)vwx = (38.0 m/s)(–0.342)=–13.0 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find vwy we note that

(3.87)vtoty = vwx + vp

Here vtoty = vtotsin 110º ; thus,

(3.88)vwy = (38.0 m/s)(0.940) − 45.0 m/s = −9.29 m/s.

This minus sign indicates motion south which is consistent with the diagram.
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Now that the perpendicular components of the wind velocity vwx and vwy are known, we can find the magnitude and direction of vw . First,

the magnitude is

(3.89)vw = vwx
2 + vwy

2

= ( − 13.0 m/s)2 + ( − 9.29 m/s)2

so that

(3.90)vw = 16.0 m/s.

The direction is:

(3.91)θ = tan−1(vwy / vwx) = tan−1( − 9.29 / −13.0)

giving

(3.92)θ = 35.6º.
Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in Figure 3.48.
Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity
relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to
one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile
motion we always use a coordinate system with one axis parallel to gravity.

Relative Velocities and Classical Relativity
When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These velocities are called relative
velocities. For example, the velocity of an airplane relative to an air mass is different from its velocity relative to the ground. Both are quite different
from the velocity of an airplane relative to its passengers (which should be close to zero). Relative velocities are one aspect of relativity, which is
defined to be the study of how different observers moving relative to each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of the 20th century.
Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later chapters. The relative velocities in this
section are actually aspects of classical relativity, first discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations
where speeds are less than about 1% of the speed of light—that is, less than 3,000 km/s . Most things we encounter in daily life move slower than

this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at the top of a mast on a
moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit behind the mast because the ship is moving
forward? The answer is that if air resistance is negligible, the binoculars will hit at the base of the mast at a point directly below its point of release.
Now let us consider what two different observers see when the binoculars drop. One observer is on the ship and the other on shore. The binoculars
have no horizontal velocity relative to the observer on the ship, and so he sees them fall straight down the mast. (See Figure 3.49.) To the observer
on shore, the binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are falling. This
observer sees the curved path shown in Figure 3.49. Although the paths look different to the different observers, each sees the same result—the
binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to correctly specify the velocities relative to the
observer.

Figure 3.49 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped from the top of its mast
fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers see the binoculars strike the deck at the base
of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)
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Example 3.8 Calculating Relative Velocity: An Airline Passenger Drops a Coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the floor 1.50 m below its
point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

Figure 3.50 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall straight down. (b) An
observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin is zero relative to the
plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/s horizontal relative to the Earth and
gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final velocity can be found
using the equation:

(3.93)vy
2 = v0y

2 − 2g(y − y0).

Substituting known values into the equation, we get

(3.94)vy
2 = 02 − 2(9.80 m/s2)( − 1.50 m − 0 m) = 29.4 m2 /s2

yielding

(3.95)vy = −5.42 m/s.

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the velocity is directed
downwards, and we have defined the positive direction to be upwards. There is no initial horizontal velocity relative to the plane and no horizontal
acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the final vertical velocity
for the coin relative to the ground is vy = − 5.42 m/s , the same as found in part (a). In contrast to part (a), there now is a horizontal

component of the velocity. However, since there is no horizontal acceleration, the initial and final horizontal velocities are the same and
vx = 260 m/s . The x- and y-components of velocity can be combined to find the magnitude of the final velocity:

(3.96)v = vx
2 + vy

2.

Thus,

(3.97)v = (260 m/s)2 + ( − 5.42 m/s)2

yielding

(3.98)v = 260.06 m/s.
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air resistance:

analytical method:

classical relativity:

commutative:

component (of a 2-d vector):

direction (of a vector):

head (of a vector):

head-to-tail method:

kinematics:

magnitude (of a vector):

motion:

projectile motion:

projectile:

The direction is given by:

(3.99)θ = tan−1(vy / vx) = tan−1( − 5.42 / 260)

so that

(3.100)θ = tan−1( − 0.0208) = −1.19º.

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth and fell 1.50 m. This
result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as when it is at rest on the ground. This result
is also true in moving cars. In part (b), an observer on the ground sees a much different motion for the coin. The plane is moving so fast
horizontally to begin with that its final velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not
add like ordinary numbers—the final velocity v in part (b) is not (260 – 5.42) m/s ; rather, it is 260.06 m/s . The velocity’s magnitude had to be

calculated to five digits to see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on
the ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except that the velocity
of the plane is much larger, so that the two observers see very different paths. (See Figure 3.50.) In addition, both observers see the coin fall
1.50 m vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus, one observer sees a
vertical path, the other a nearly horizontal path.

Making Connections: Relativity and Einstein

Because Einstein was able to clearly define how measurements are made (some involve light) and because the speed of light is the same
for all observers, the outcomes are spectacularly unexpected. Time varies with observer, energy is stored as increased mass, and more
surprises await.

PhET Explorations: Motion in 2D

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the
ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Figure 3.51 Motion in 2D (http://cnx.org/content/m42045/1.10/motion-2d_en.jar)

Glossary
a frictional force that slows the motion of objects as they travel through the air; when solving basic physics problems, air resistance

is assumed to be zero

the method of determining the magnitude and direction of a resultant vector using the Pythagorean theorem and trigonometric
identities

the study of relative velocities in situations where speeds are less than about 1% of the speed of light—that is, less than 3000
km/s

refers to the interchangeability of order in a function; vector addition is commutative because the order in which vectors are added
together does not affect the final sum

a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector can be expressed as
a sum of two vertical and horizontal vector components

the orientation of a vector in space

the end point of a vector; the location of the tip of the vector’s arrowhead; also referred to as the “tip”

a method of adding vectors in which the tail of each vector is placed at the head of the previous vector

the study of motion without regard to mass or force

the length or size of a vector; magnitude is a scalar quantity

displacement of an object as a function of time

the motion of an object that is subject only to the acceleration of gravity

an object that travels through the air and experiences only acceleration due to gravity
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range:

relative velocity:

relativity:

resultant vector:

resultant:

scalar:

tail:

trajectory:

vector addition:

vector:

velocity:

the maximum horizontal distance that a projectile travels

the velocity of an object as observed from a particular reference frame

the study of how different observers moving relative to each other measure the same phenomenon

the vector sum of two or more vectors

the sum of two or more vectors

a quantity with magnitude but no direction

the start point of a vector; opposite to the head or tip of the arrow

the path of a projectile through the air

the rules that apply to adding vectors together

a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and direction

speed in a given direction

Section Summary

3.1 Kinematics in Two Dimensions: An Introduction
• The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector with horizontal and

vertical components.

• The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does not affect motion in
the vertical direction, and vice versa.

3.2 Vector Addition and Subtraction: Graphical Methods
• The graphical method of adding vectors A and B involves drawing vectors on a graph and adding them using the head-to-tail method. The

resultant vector R is defined such that A + B = R . The magnitude and direction of R are then determined with a ruler and protractor,
respectively.

• The graphical method of subtracting vector B from A involves adding the opposite of vector B , which is defined as −B . In this case,

A – B = A + (–B) = R . Then, the head-to-tail method of addition is followed in the usual way to obtain the resultant vector R .

• Addition of vectors is commutative such that A + B = B + A .

• The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each subsequent vector at
the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to the head of the final vector.

• If a vector A is multiplied by a scalar quantity c , the magnitude of the product is given by cA . If c is positive, the direction of the product

points in the same direction as A ; if c is negative, the direction of the product points in the opposite direction as A .

3.3 Vector Addition and Subtraction: Analytical Methods
• The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric identities to determine the

magnitude and direction of a resultant vector.

• The steps to add vectors A and B using the analytical method are as follows:
Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each vector using the
equations

Ax = A cos θ
Bx = B cos θ

and

Ay = A sin θ
By = B sin θ.

Step 2: Add the horizontal and vertical components of each vector to determine the components Rx and Ry of the resultant vector, R :

Rx = Ax + Bx
and

Ry = Ay + By.

Step 3: Use the Pythagorean theorem to determine the magnitude, R , of the resultant vector R :

R = Rx
2 + Ry

2.

Step 4: Use a trigonometric identity to determine the direction, θ , of R :

CHAPTER 3 | TWO-DIMENSIONAL KINEMATICS 117



θ = tan−1(Ry / Rx).

3.4 Projectile Motion
• Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.

• To solve projectile motion problems, perform the following steps:

1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical components. The
components of position s are given by the quantities x and y , and the components of the velocity v are given by vx = v cos θ and

vy = v sin θ , where v is the magnitude of the velocity and θ is its direction.

2. Analyze the motion of the projectile in the horizontal direction using the following equations:

Horizontal motion(ax = 0)

x = x0 + vxt

vx = v0x = vx = velocity is a constant.
3. Analyze the motion of the projectile in the vertical direction using the following equations:

Vertical motion(Assuming positive direction is up; ay = −g = −9.80 m/s2)

y = y0 + 1
2(v0y + vy)t

vy = v0y − gt

y = y0 + v0yt − 1
2gt2

vy
2 = v0y

2 − 2g(y − y0).

4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:

s = x2 + y2

θ = tan−1(y / x)

v = vx
2 + vy

2

θv = tan−1(vy / vx).
• The maximum height h of a projectile launched with initial vertical velocity v0y is given by

h =
v0y

2

2g .

• The maximum horizontal distance traveled by a projectile is called the range. The range R of a projectile on level ground launched at an angle

θ0 above the horizontal with initial speed v0 is given by

R =
v0

2 sin 2θ0
g .

3.5 Addition of Velocities
• Velocities in two dimensions are added using the same analytical vector techniques, which are rewritten as

vx = v cos θ
vy = v sin θ

v = vx
2 + vy

2

θ = tan−1(vy / vx).

• Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies dramatically with reference frame.

• Relativity is the study of how different observers measure the same phenomenon, particularly when the observers move relative to one
another. Classical relativity is limited to situations where speed is less than about 1% of the speed of light (3000 km/s).

Conceptual Questions

3.2 Vector Addition and Subtraction: Graphical Methods
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1. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water, the cost of this
book, the Earth’s population, the acceleration of gravity?

2. Give a specific example of a vector, stating its magnitude, units, and direction.

3. What do vectors and scalars have in common? How do they differ?

4. Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated below. The total
distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each camper?

Figure 3.52

5. If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up anywhere on the
circle shown in Figure 3.53. What other information would he need to get to Sacramento?

Figure 3.53

6. Suppose you take two steps A and B (that is, two nonzero displacements). Under what circumstances can you end up at your starting point?
More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum distance you can end up from the starting
point A + B the sum of the lengths of the two steps?

7. Explain why it is not possible to add a scalar to a vector.

8. If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different magnitudes ever add to
zero? Can three or more?

3.3 Vector Addition and Subtraction: Analytical Methods
9. Suppose you add two vectors A and B . What relative direction between them produces the resultant with the greatest magnitude? What is the
maximum magnitude? What relative direction between them produces the resultant with the smallest magnitude? What is the minimum magnitude?

10. Give an example of a nonzero vector that has a component of zero.

11. Explain why a vector cannot have a component greater than its own magnitude.

12. If the vectors A and B are perpendicular, what is the component of A along the direction of B ? What is the component of B along the

direction of A ?

3.4 Projectile Motion
13. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being neither 0º nor 90º
): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever be the same as the initial velocity at a time
other than at t = 0 ? (d) Can the speed ever be the same as the initial speed at a time other than at t = 0 ?
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14. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being neither 0º nor 90º
): (a) Is the acceleration ever zero? (b) Is the acceleration ever in the same direction as a component of velocity? (c) Is the acceleration ever opposite
in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there are two angles that
give the same range. Considering factors that might affect the ability of an archer to hit a target, such as wind, explain why the smaller angle (closer
to the horizontal) is preferable. When would it be necessary for the archer to use the larger angle? Why does the punter in a football game use the
higher trajectory?

16. During a lecture demonstration, a professor places two coins on the edge of a table. She then flicks one of the coins horizontally off the table,
simultaneously nudging the other over the edge. Describe the subsequent motion of the two coins, in particular discussing whether they hit the floor
at the same time.

3.5 Addition of Velocities
17. What frame or frames of reference do you instinctively use when driving a car? When flying in a commercial jet airplane?

18. A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast. Why doesn’t he need to
keep his eyes on the ball?

19. If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall straight down as viewed
by a person standing at the side of the road? Under what condition would this occur? How would the motion of the ball appear to the person who
threw it?

20. The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the jogger’s frame of
reference. Draw its path as viewed by a stationary observer.

21. A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. What is the direction of its velocity
relative to the truck just before it hits? Is this the same as the direction of its velocity relative to ground just before it hits? Explain your answers.

120 CHAPTER 3 | TWO-DIMENSIONAL KINEMATICS

This content is available for free at http://cnx.org/content/col11406/1.7



Problems & Exercises

3.2 Vector Addition and Subtraction: Graphical Methods
Use graphical methods to solve these problems. You may assume
data taken from graphs is accurate to three digits.

22. Find the following for path A in Figure 3.54: (a) the total distance
traveled, and (b) the magnitude and direction of the displacement from
start to finish.

Figure 3.54 The various lines represent paths taken by different people walking in a
city. All blocks are 120 m on a side.

23. Find the following for path B in Figure 3.54: (a) the total distance
traveled, and (b) the magnitude and direction of the displacement from
start to finish.

24. Find the north and east components of the displacement for the
hikers shown in Figure 3.52.

25. Suppose you walk 18.0 m straight west and then 25.0 m straight
north. How far are you from your starting point, and what is the compass
direction of a line connecting your starting point to your final position? (If
you represent the two legs of the walk as vector displacements A and

B , as in Figure 3.55, then this problem asks you to find their sum

R = A + B .)

Figure 3.55 The two displacements A and B add to give a total displacement R
having magnitude R and direction θ .

26. Suppose you first walk 12.0 m in a direction 20º west of north and

then 20.0 m in a direction 40.0º south of west. How far are you from
your starting point, and what is the compass direction of a line connecting
your starting point to your final position? (If you represent the two legs of
the walk as vector displacements A and B , as in Figure 3.56, then this

problem finds their sum R = A + B .)

Figure 3.56

27. Repeat the problem above, but reverse the order of the two legs of
the walk; show that you get the same final result. That is, you first walk
leg B , which is 20.0 m in a direction exactly 40º south of west, and

then leg A , which is 12.0 m in a direction exactly 20º west of north.

(This problem shows that A + B = B + A .)

28. (a) Repeat the problem two problems prior, but for the second leg you
walk 20.0 m in a direction 40.0º north of east (which is equivalent to

subtracting B from A —that is, to finding R′ = A − B ). (b) Repeat
the problem two problems prior, but now you first walk 20.0 m in a
direction 40.0º south of west and then 12.0 m in a direction 20.0º east

of south (which is equivalent to subtracting A from B —that is, to

finding R′′ = B - A = - R′ ). Show that this is the case.

29. Show that the order of addition of three vectors does not affect their
sum. Show this property by choosing any three vectors A , B , and C ,

all having different lengths and directions. Find the sum A + B + C
then find their sum when added in a different order and show the result is
the same. (There are five other orders in which A , B , and C can be
added; choose only one.)

30. Show that the sum of the vectors discussed in Example 3.2 gives the
result shown in Figure 3.24.

31. Find the magnitudes of velocities vA and vB in Figure 3.57

Figure 3.57 The two velocities vA and vB add to give a total vtot .

32. Find the components of vtot along the x- and y-axes in Figure 3.57.

33. Find the components of vtot along a set of perpendicular axes

rotated 30º counterclockwise relative to those in Figure 3.57.

3.3 Vector Addition and Subtraction: Analytical Methods
34. Find the following for path C in Figure 3.58: (a) the total distance
traveled and (b) the magnitude and direction of the displacement from
start to finish. In this part of the problem, explicitly show how you follow
the steps of the analytical method of vector addition.
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Figure 3.58 The various lines represent paths taken by different people walking in a
city. All blocks are 120 m on a side.

35. Find the following for path D in Figure 3.58: (a) the total distance
traveled and (b) the magnitude and direction of the displacement from
start to finish. In this part of the problem, explicitly show how you follow
the steps of the analytical method of vector addition.

36. Find the north and east components of the displacement from San
Francisco to Sacramento shown in Figure 3.59.

Figure 3.59

37. Solve the following problem using analytical techniques: Suppose you
walk 18.0 m straight west and then 25.0 m straight north. How far are you
from your starting point, and what is the compass direction of a line
connecting your starting point to your final position? (If you represent the
two legs of the walk as vector displacements A and B , as in Figure
3.60, then this problem asks you to find their sum R = A + B .)

Figure 3.60 The two displacements A and B add to give a total displacement R
having magnitude R and direction θ .

Note that you can also solve this graphically. Discuss why the analytical
technique for solving this problem is potentially more accurate than the
graphical technique.

38. Repeat Exercise 3.37 using analytical techniques, but reverse the
order of the two legs of the walk and show that you get the same final
result. (This problem shows that adding them in reverse order gives the

same result—that is, B + A = A + B .) Discuss how taking another
path to reach the same point might help to overcome an obstacle
blocking you other path.

39. You drive 7.50 km in a straight line in a direction 15º east of north.
(a) Find the distances you would have to drive straight east and then
straight north to arrive at the same point. (This determination is
equivalent to find the components of the displacement along the east and
north directions.) (b) Show that you still arrive at the same point if the
east and north legs are reversed in order.

40. Do Exercise 3.37 again using analytical techniques and change the
second leg of the walk to 25.0 m straight south. (This is equivalent to

subtracting B from A —that is, finding R′ = A – B ) (b) Repeat

again, but now you first walk 25.0 m north and then 18.0 m east. (This

is equivalent to subtract A from B —that is, to find A = B + C . Is
that consistent with your result?)

41. A new landowner has a triangular piece of flat land she wishes to
fence. Starting at the west corner, she measures the first side to be 80.0
m long and the next to be 105 m. These sides are represented as
displacement vectors A from B in Figure 3.61. She then correctly

calculates the length and orientation of the third side C . What is her
result?

Figure 3.61

42. You fly 32.0 km in a straight line in still air in the direction 35.0º
south of west. (a) Find the distances you would have to fly straight south
and then straight west to arrive at the same point. (This determination is
equivalent to finding the components of the displacement along the south
and west directions.) (b) Find the distances you would have to fly first in a
direction 45.0º south of west and then in a direction 45.0º west of
north. These are the components of the displacement along a different
set of axes—one rotated 45º .

43. A farmer wants to fence off his four-sided plot of flat land. He
measures the first three sides, shown as A, B, and C in Figure 3.62,

and then correctly calculates the length and orientation of the fourth side
D . What is his result?

Figure 3.62

44. In an attempt to escape his island, Gilligan builds a raft and sets to
sea. The wind shifts a great deal during the day, and he is blown along
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the following straight lines: 2.50 km 45.0º north of west; then

4.70 km 60.0º south of east; then 1.30 km 25.0º south of west;

then 5.10 km straight east; then 1.70 km 5.00º east of north; then

7.20 km 55.0º south of west; and finally 2.80 km 10.0º north of
east. What is his final position relative to the island?

45. Suppose a pilot flies 40.0 km in a direction 60º north of east and

then flies 30.0 km in a direction 15º north of east as shown in Figure
3.63. Find her total distance R from the starting point and the direction

θ of the straight-line path to the final position. Discuss qualitatively how
this flight would be altered by a wind from the north and how the effect of
the wind would depend on both wind speed and the speed of the plane
relative to the air mass.

Figure 3.63

3.4 Projectile Motion
46. A projectile is launched at ground level with an initial speed of 50.0 m/
s at an angle of 30.0º above the horizontal. It strikes a target above the
ground 3.00 seconds later. What are the x and y distances from where

the projectile was launched to where it lands?

47. A ball is kicked with an initial velocity of 16 m/s in the horizontal
direction and 12 m/s in the vertical direction. (a) At what speed does the
ball hit the ground? (b) For how long does the ball remain in the air?
(c)What maximum height is attained by the ball?

48. A ball is thrown horizontally from the top of a 60.0-m building and
lands 100.0 m from the base of the building. Ignore air resistance. (a)
How long is the ball in the air? (b) What must have been the initial
horizontal component of the velocity? (c) What is the vertical component
of the velocity just before the ball hits the ground? (d) What is the velocity
(including both the horizontal and vertical components) of the ball just
before it hits the ground?

49. (a) A daredevil is attempting to jump his motorcycle over a line of
buses parked end to end by driving up a 32º ramp at a speed of

40.0 m/s (144 km/h) . How many buses can he clear if the top of the

takeoff ramp is at the same height as the bus tops and the buses are
20.0 m long? (b) Discuss what your answer implies about the margin of
error in this act—that is, consider how much greater the range is than the
horizontal distance he must travel to miss the end of the last bus.
(Neglect air resistance.)

50. An archer shoots an arrow at a 75.0 m distant target; the bull’s-eye of
the target is at same height as the release height of the arrow. (a) At what
angle must the arrow be released to hit the bull’s-eye if its initial speed is
35.0 m/s? In this part of the problem, explicitly show how you follow the
steps involved in solving projectile motion problems. (b) There is a large
tree halfway between the archer and the target with an overhanging
horizontal branch 3.50 m above the release height of the arrow. Will the
arrow go over or under the branch?

51. A rugby player passes the ball 7.00 m across the field, where it is
caught at the same height as it left his hand. (a) At what angle was the
ball thrown if its initial speed was 12.0 m/s, assuming that the smaller of
the two possible angles was used? (b) What other angle gives the same
range, and why would it not be used? (c) How long did this pass take?

52. Verify the ranges for the projectiles in Figure 3.41(a) for θ = 45º
and the given initial velocities.

53. Verify the ranges shown for the projectiles in Figure 3.41(b) for an
initial velocity of 50 m/s at the given initial angles.

54. The cannon on a battleship can fire a shell a maximum distance of
32.0 km. (a) Calculate the initial velocity of the shell. (b) What maximum
height does it reach? (At its highest, the shell is above 60% of the
atmosphere—but air resistance is not really negligible as assumed to
make this problem easier.) (c) The ocean is not flat, because the Earth is

curved. Assume that the radius of the Earth is 6.37×103 km . How
many meters lower will its surface be 32.0 km from the ship along a
horizontal line parallel to the surface at the ship? Does your answer imply
that error introduced by the assumption of a flat Earth in projectile motion
is significant here?

55. An arrow is shot from a height of 1.5 m toward a cliff of height H . It

is shot with a velocity of 30 m/s at an angle of 60º above the horizontal.
It lands on the top edge of the cliff 4.0 s later. (a) What is the height of the
cliff? (b) What is the maximum height reached by the arrow along its
trajectory? (c) What is the arrow’s impact speed just before hitting the
cliff?

56. In the standing broad jump, one squats and then pushes off with the
legs to see how far one can jump. Suppose the extension of the legs
from the crouch position is 0.600 m and the acceleration achieved from
this position is 1.25 times the acceleration due to gravity, g . How far can

they jump? State your assumptions. (Increased range can be achieved
by swinging the arms in the direction of the jump.)

57. The world long jump record is 8.95 m (Mike Powell, USA, 1991).
Treated as a projectile, what is the maximum range obtainable by a
person if he has a take-off speed of 9.5 m/s? State your assumptions.

58. Serving at a speed of 170 km/h, a tennis player hits the ball at a
height of 2.5 m and an angle θ below the horizontal. The service line is

11.9 m from the net, which is 0.91 m high. What is the angle θ such that
the ball just crosses the net? Will the ball land in the service box, whose
out line is 6.40 m from the net?

59. A football quarterback is moving straight backward at a speed of 200
m/s when he throws a pass to a player 18.0 m straight downfield. (a) If
the ball is thrown at an angle of 25º relative to the ground and is caught
at the same height as it is released, what is its initial speed relative to the
ground? (b) How long does it take to get to the receiver? (c) What is its
maximum height above its point of release?

60. Gun sights are adjusted to aim high to compensate for the effect of
gravity, effectively making the gun accurate only for a specific range. (a) If
a gun is sighted to hit targets that are at the same height as the gun and
100.0 m away, how low will the bullet hit if aimed directly at a target 150.0
m away? The muzzle velocity of the bullet is 275 m/s. (b) Discuss
qualitatively how a larger muzzle velocity would affect this problem and
what would be the effect of air resistance.

61. An eagle is flying horizontally at a speed of 3.00 m/s when the fish in
her talons wiggles loose and falls into the lake 5.00 m below. Calculate
the velocity of the fish relative to the water when it hits the water.

62. An owl is carrying a mouse to the chicks in its nest. Its position at that
time is 4.00 m west and 12.0 m above the center of the 30.0 cm diameter
nest. The owl is flying east at 3.50 m/s at an angle 30.0º below the
horizontal when it accidentally drops the mouse. Is the owl lucky enough
to have the mouse hit the nest? To answer this question, calculate the
horizontal position of the mouse when it has fallen 12.0 m.

63. Suppose a soccer player kicks the ball from a distance 30 m toward
the goal. Find the initial speed of the ball if it just passes over the goal,
2.4 m above the ground, given the initial direction to be 40º above the
horizontal.

64. Can a goalkeeper at her/ his goal kick a soccer ball into the
opponent’s goal without the ball touching the ground? The distance will
be about 95 m. A goalkeeper can give the ball a speed of 30 m/s.
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65. The free throw line in basketball is 4.57 m (15 ft) from the basket,
which is 3.05 m (10 ft) above the floor. A player standing on the free
throw line throws the ball with an initial speed of 7.15 m/s, releasing it at
a height of 2.44 m (8 ft) above the floor. At what angle above the
horizontal must the ball be thrown to exactly hit the basket? Note that
most players will use a large initial angle rather than a flat shot because it
allows for a larger margin of error. Explicitly show how you follow the
steps involved in solving projectile motion problems.

66. In 2007, Michael Carter (U.S.) set a world record in the shot put with
a throw of 24.77 m. What was the initial speed of the shot if he released it
at a height of 2.10 m and threw it at an angle of 38.0º above the
horizontal? (Although the maximum distance for a projectile on level
ground is achieved at 45º when air resistance is neglected, the actual

angle to achieve maximum range is smaller; thus, 38º will give a longer

range than 45º in the shot put.)

67. A basketball player is running at 5.00 m/s directly toward the basket
when he jumps into the air to dunk the ball. He maintains his horizontal
velocity. (a) What vertical velocity does he need to rise 0.750 m above
the floor? (b) How far from the basket (measured in the horizontal
direction) must he start his jump to reach his maximum height at the
same time as he reaches the basket?

68. A football player punts the ball at a 45.0º angle. Without an effect
from the wind, the ball would travel 60.0 m horizontally. (a) What is the
initial speed of the ball? (b) When the ball is near its maximum height it
experiences a brief gust of wind that reduces its horizontal velocity by
1.50 m/s. What distance does the ball travel horizontally?

69. Prove that the trajectory of a projectile is parabolic, having the form

y = ax + bx2 . To obtain this expression, solve the equation x = v0x t

for t and substitute it into the expression for y = v0yt – (1 / 2)gt2

(These equations describe the x and y positions of a projectile that

starts at the origin.) You should obtain an equation of the form

y = ax + bx2 where a and b are constants.

70. Derive R =
v0

2 sin 2θ0
g for the range of a projectile on level ground

by finding the time t at which y becomes zero and substituting this

value of t into the expression for x − x0 , noting that R = x − x0

71. Unreasonable Results (a) Find the maximum range of a super
cannon that has a muzzle velocity of 4.0 km/s. (b) What is unreasonable
about the range you found? (c) Is the premise unreasonable or is the
available equation inapplicable? Explain your answer. (d) If such a
muzzle velocity could be obtained, discuss the effects of air resistance,
thinning air with altitude, and the curvature of the Earth on the range of
the super cannon.

72. Construct Your Own Problem Consider a ball tossed over a fence.
Construct a problem in which you calculate the ball’s needed initial
velocity to just clear the fence. Among the things to determine are; the
height of the fence, the distance to the fence from the point of release of
the ball, and the height at which the ball is released. You should also
consider whether it is possible to choose the initial speed for the ball and
just calculate the angle at which it is thrown. Also examine the possibility
of multiple solutions given the distances and heights you have chosen.

3.5 Addition of Velocities
73. Bryan Allen pedaled a human-powered aircraft across the English
Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979. (a)
He flew for 169 min at an average velocity of 3.53 m/s in a direction 45º
south of east. What was his total displacement? (b) Allen encountered a
headwind averaging 2.00 m/s almost precisely in the opposite direction of
his motion relative to the Earth. What was his average velocity relative to
the air? (c) What was his total displacement relative to the air mass?

74. A seagull flies at a velocity of 9.00 m/s straight into the wind. (a) If it
takes the bird 20.0 min to travel 6.00 km relative to the Earth, what is the

velocity of the wind? (b) If the bird turns around and flies with the wind,
how long will he take to return 6.00 km? (c) Discuss how the wind affects
the total round-trip time compared to what it would be with no wind.

75. Near the end of a marathon race, the first two runners are separated
by a distance of 45.0 m. The front runner has a velocity of 3.50 m/s, and
the second a velocity of 4.20 m/s. (a) What is the velocity of the second
runner relative to the first? (b) If the front runner is 250 m from the finish
line, who will win the race, assuming they run at constant velocity? (c)
What distance ahead will the winner be when she crosses the finish line?

76. Verify that the coin dropped by the airline passenger in the Example
3.8 travels 144 m horizontally while falling 1.50 m in the frame of
reference of the Earth.

77. A football quarterback is moving straight backward at a speed of 2.00
m/s when he throws a pass to a player 18.0 m straight downfield. The
ball is thrown at an angle of 25.0º relative to the ground and is caught at
the same height as it is released. What is the initial velocity of the ball
relative to the quarterback ?

78. A ship sets sail from Rotterdam, The Netherlands, heading due north
at 7.00 m/s relative to the water. The local ocean current is 1.50 m/s in a
direction 40.0º north of east. What is the velocity of the ship relative to
the Earth?

79. (a) A jet airplane flying from Darwin, Australia, has an air speed of
260 m/s in a direction 5.0º south of west. It is in the jet stream, which is

blowing at 35.0 m/s in a direction 15º south of east. What is the velocity
of the airplane relative to the Earth? (b) Discuss whether your answers
are consistent with your expectations for the effect of the wind on the
plane’s path.

80. (a) In what direction would the ship in Exercise 3.78 have to travel in
order to have a velocity straight north relative to the Earth, assuming its
speed relative to the water remains 7.00 m/s ? (b) What would its speed
be relative to the Earth?

81. (a) Another airplane is flying in a jet stream that is blowing at 45.0 m/s
in a direction 20º south of east (as in Exercise 3.79). Its direction of

motion relative to the Earth is 45.0º south of west, while its direction of

travel relative to the air is 5.00º south of west. What is the airplane’s
speed relative to the air mass? (b) What is the airplane’s speed relative
to the Earth?

82. A sandal is dropped from the top of a 15.0-m-high mast on a ship
moving at 1.75 m/s due south. Calculate the velocity of the sandal when
it hits the deck of the ship: (a) relative to the ship and (b) relative to a
stationary observer on shore. (c) Discuss how the answers give a
consistent result for the position at which the sandal hits the deck.

83. The velocity of the wind relative to the water is crucial to sailboats.
Suppose a sailboat is in an ocean current that has a velocity of 2.20 m/s
in a direction 30.0º east of north relative to the Earth. It encounters a

wind that has a velocity of 4.50 m/s in a direction of 50.0º south of west
relative to the Earth. What is the velocity of the wind relative to the water?

84. The great astronomer Edwin Hubble discovered that all distant
galaxies are receding from our Milky Way Galaxy with velocities
proportional to their distances. It appears to an observer on the Earth that
we are at the center of an expanding universe. Figure 3.64 illustrates this
for five galaxies lying along a straight line, with the Milky Way Galaxy at
the center. Using the data from the figure, calculate the velocities: (a)
relative to galaxy 2 and (b) relative to galaxy 5. The results mean that
observers on all galaxies will see themselves at the center of the
expanding universe, and they would likely be aware of relative velocities,
concluding that it is not possible to locate the center of expansion with
the given information.
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Figure 3.64 Five galaxies on a straight line, showing their distances and velocities
relative to the Milky Way (MW) Galaxy. The distances are in millions of light years
(Mly), where a light year is the distance light travels in one year. The velocities are
nearly proportional to the distances. The sizes of the galaxies are greatly
exaggerated; an average galaxy is about 0.1 Mly across.

85. (a) Use the distance and velocity data in Figure 3.64 to find the rate
of expansion as a function of distance.

(b) If you extrapolate back in time, how long ago would all of the galaxies
have been at approximately the same position? The two parts of this
problem give you some idea of how the Hubble constant for universal
expansion and the time back to the Big Bang are determined,
respectively.

86. An athlete crosses a 25-m-wide river by swimming perpendicular to
the water current at a speed of 0.5 m/s relative to the water. He reaches
the opposite side at a distance 40 m downstream from his starting point.
How fast is the water in the river flowing with respect to the ground?
What is the speed of the swimmer with respect to a friend at rest on the
ground?

87. A ship sailing in the Gulf Stream is heading 25.0º west of north at a
speed of 4.00 m/s relative to the water. Its velocity relative to the Earth is
4.80 m/s 5.00º west of north. What is the velocity of the Gulf Stream?
(The velocity obtained is typical for the Gulf Stream a few hundred
kilometers off the east coast of the United States.)

88. An ice hockey player is moving at 8.00 m/s when he hits the puck
toward the goal. The speed of the puck relative to the player is 29.0 m/s.
The line between the center of the goal and the player makes a 90.0º
angle relative to his path as shown in Figure 3.65. What angle must the
puck’s velocity make relative to the player (in his frame of reference) to
hit the center of the goal?

Figure 3.65 An ice hockey player moving across the rink must shoot backward to give
the puck a velocity toward the goal.

89. Unreasonable Results Suppose you wish to shoot supplies straight
up to astronauts in an orbit 36,000 km above the surface of the Earth. (a)
At what velocity must the supplies be launched? (b) What is
unreasonable about this velocity? (c) Is there a problem with the relative
velocity between the supplies and the astronauts when the supplies
reach their maximum height? (d) Is the premise unreasonable or is the
available equation inapplicable? Explain your answer.

90. Unreasonable Results A commercial airplane has an air speed of
280 m/s due east and flies with a strong tailwind. It travels 3000 km in a

direction 5º south of east in 1.50 h. (a) What was the velocity of the
plane relative to the ground? (b) Calculate the magnitude and direction of
the tailwind’s velocity. (c) What is unreasonable about both of these
velocities? (d) Which premise is unreasonable?

91. Construct Your Own Problem Consider an airplane headed for a
runway in a cross wind. Construct a problem in which you calculate the
angle the airplane must fly relative to the air mass in order to have a
velocity parallel to the runway. Among the things to consider are the
direction of the runway, the wind speed and direction (its velocity) and the
speed of the plane relative to the air mass. Also calculate the speed of
the airplane relative to the ground. Discuss any last minute maneuvers
the pilot might have to perform in order for the plane to land with its
wheels pointing straight down the runway.
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